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ELECTRONIC CIRCUIT FOR DC
CONVERSION OF FLUORESCENT
LIGHTING BALLAST

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application Ser. No. 61/178,093, filed May 14, 2009, which
is hereby incorporated by reference in its entirety.

TECHNICAL FIELD

The present invention relates in general to LED fluorescent
lamp replacements.

BACKGROUND

Fluorescent lamps are commonly installed with an addi-
tional device to regulate the voltage and current provided to
the fluorescent lamp. This device, known as a ballast, can be
designed to provide the proper starting voltage to establish an
arc between two electrodes of the fluorescent lamp. Addition-
ally, the ballast can designed to provide a controlled voltage to
limit the amount of current to the fluorescent lamp during
operation thereof. The starting and operating voltages pro-
vided by the ballast to power the fluorescent lamp can depend
on, for example, the length and/or diameter of the fluorescent
lamp. Accordingly, a fluorescent lamp may contain a ballast
particularly designed to provide the proper starting and oper-
ating voltages.

Fluorescent lamps are gradually being replaced by light-
emitting diodes (LEDs) in many applications. LEDs have
many advantages over traditional fluorescent lamps in that
they have, for example, longer operational life, reduced
power consumption, greater durability and increased design
flexibility.

Accordingly, LED replacement lamps have been devel-
oped that retrofit fluorescent lamp fixtures using existing
ballasts. These LED replacements commonly contain electri-
cal circuitry for power conversion that may not be, for
example, universally compatible with any type of ballast
found in existing fixtures.

BRIEF SUMMARY

Embodiments of an illumination device including LEDs
for connection to an existing fluorescent lamp fixture includ-
ing a conventional ballast, the ballast configured to provide a
current signal are disclosed herein. One such embodiment
includes protection circuitry configured to protect the illumi-
nation device from the ballast current signal, a full-wave
rectifier electrically coupled to the circuit protection means
and configured to produce a rectified voltage output, a
smoothing filter electrically coupled to the full wave rectifier
and configured to produce a smoothed rectified voltage out-
put and a current regulator power circuit electrically coupled
to the smoothing filter and the LEDS. The current regulator
power circuit includes a first switching element configured to
operate in response to a first pulse width modulated (PWM)
ON/OFF control signal, the first switching element delivering
current to the LEDs in response to the ON control signal and
the first switching element not delivering current to the LEDs
in response to the OFF control signal. a current controller
electrically coupled to a gate of the first switching element,
the current controller configured to generate the first PWM
control signal and a current sense resistor electrically coupled
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to the first switching element and configured to sense the
current through the LEDS, wherein the sensed current is fed
back to the current controller.

Embodiments of another illumination device including
LEDs for connection to an existing fluorescent lamp fixture
including a conventional ballast are disclosed herein. One
such embodiment includes means for receiving a current
signal from the conventional ballast and means for protecting
the illumination device from the received current signal. The
illumination device also includes means for rectifying the
received current signal to produce a rectified voltage output
and means for sensing the current through the LEDs. Further,
the illumination device includes means for generating a pulse
width modulated (PWM) control signal from a current con-
trol circuit based on the sensed current and means for supply-
ing current to the LEDs in response to the PWM control signal
so that the LED current reaches an average LED current.

Further, embodiments of a method of supplying power to
an illumination device including LEDs and connected to an
existing fluorescent lamp fixture including a conventional
ballast are also disclosed herein. One such method includes
receiving a current signal from the conventional ballast, pro-
tecting the illumination device from the received current sig-
nal, rectifying the received current signal to produce a recti-
fied voltage output, sensing the current through the LEDs,
generating a pulse width modulated (PWM) control signal
from a current control circuit based on the sensed current and
supplying current to the LEDs in response to the PWM con-
trol signal so that the LED current reaches an average LED
current.

Other embodiments of the invention are described in addi-
tional detail hereinafter.

BRIEF DESCRIPTION OF THE DRAWING

The various features, advantages and other uses of the
present invention will become more apparent by referring to
the following detailed description and drawing in which:

FIG. 1 is a block diagram of a light system containing a
power converter in accordance with an embodiment of the
invention.

FIG. 2 is a circuit schematic illustrating various compo-
nents of the power converter of FIG. 1;

FIG. 3 is a circuit schematic of a current controller used in
the power converter of FIG. 2;

FIG. 4 is a circuit schematic of a voltage controller used in
the power converter of FIG. 2;

FIG. 5 is a circuit schematic of a voltage regulator used in
the power converter of FIG. 2;

FIG. 6 is a circuit simulation waveform of an output for-
ward voltage of an LED array along with a rectified DC
voltage and a DC link voltage from the power converter of
FIG. 2;

FIG. 7A is a circuit simulation waveform of switch turn-on
di/dt changing as a function of a gate drive resistor value from
the power converter of FIG. 2; and

FIG. 7B is a circuit simulation waveform of switch turn-on
dv/dt changing as a function of a gate drive resistor value from
the power converter of FIG. 2.

DETAILED DESCRIPTION

FIG. 1is a block diagram of a light system 10 according to
one embodiment of the invention. LED light system 10 can
include a fixture (not shown) and an LED replacement lamp
12 powered by a signal source 14. The fixture can be, for
example, an existing fluorescent lamp fixture that may have
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been previously used in a light system for a fluorescent lamp.
According to the embodiments discussed herein, replacement
lamp 12 can be retrofitted to the existing fixture. The fixture
can contain a ballast 16, which can be connected between
signal source 14 and replacement lamp 12. Replacement lamp
12 can include a power converter 18 and an LED array 20.
Although the embodiments will be discussed with reference
to a replacement lamp that solely contains LEDs, other
embodiments of light system 10 do not have to be exclusively
limited to LEDs. For example, other embodiments of light
system 10 may contain a replacement lamp that contains a
combination a fluorescent lamp and LEDs.

Signal source 14 can be any suitable alternating current
(AC) source or direct current (DC) source. For example,
signal source 14 can be a 110/220 VAC single phase direct
connect. As discussed previously, signal source 14 provides
power to ballast 16. Ballast 16 can convert the power from
signal source 14 to a power level designed to activate and
operate a fluorescent lamp. Ballast 16 can be any type of
ballast suitable for lighting fluorescent lamps by, for example,
modifying the electrical voltage and frequency levels of sig-
nal source 14. Some non-limiting examples of ballast 16 are
rapid start electronic ballasts, instant start electronic ballasts,
magnetic ballasts or a hybrid containing components of both
the electric and magnetic ballasts.

Power converter 18 can receive the power output from the
ballast, by, for example, leads from the ballast that would
have previously been connected to the lamp sockets for a
fluorescent lamp. Power converter 18 can convert the power
output by the ballast into power usable by and suitable for
LED array 20. Power converter 18 can include an inrush
protection circuit 22, a surge suppressor circuit 24, a noise
filter circuit 26, a rectifier circuit 28, a main filter circuit 30, a
current regulator circuit 32 and a shunt voltage regulator
circuit 34. Current regulator circuit 30 can be connected to
LEDs 20. As will be described in additional detail, power
converter 18 is suitably designed to receive a wide range of
currents and/or voltages from ballast 16.

LEDs 20 in replacement lamp 12 can include at least one
LED, a plurality of series-connected or parallel-connected
LEDs, or an LED array. At least one LED array can include a
plurality of LED arrays. Any type of LED may be used in
LEDs 20. For example, LEDs can be high-brightness semi-
conductor LEDs, an organic light emitting diodes (OLEDs),
semiconductor dies that produce light in response to current,
light emitting polymers, electro-luminescent strips (EL) or
the like.

FIG. 2 is a circuit schematic of illustrating various details
ofpower converter 18 of FIG. 1. Signal source 14 can provide,
for example, an AC signal to inrush protection circuit 22.
Inrush protection circuit 22 can be realized by inrush current
limiters 42 and 44. Capacitor 40 can be connected in parallel
to output of the ballast 16 for filtering incoming voltage
spikes. Inrush current limiter 40 can have one end connected
to a common point between the output of ballast 16 and
capacitor 40 for receiving the positive half cycle of the ballast
output and the other end connected to surge suppressor circuit
24. Similarly, inrush current limiter 42 can have one end
connected to a common point between the output ofballast 16
and capacitor 40 for receiving the negative half cycle of the
ballast output and the other end connected to surge suppressor
circuit 24.

When signal source 14 is initially connected, high inrush
current can pass from the output of ballast 16 to components
of power converter 18. High inrush currents may be moder-
ated by placing inrush current limiters 42 and 44 in series with
the current flow. In one embodiment, inrush current limiters
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42 and 44 can be negative temperature coefficient (NTC)
resistors. When signal source 14 is first connected, for
example, NTC resistors can be cool and have a high resistance
value thereby limiting inrush current. After a period of opera-
tion, NTC resistors can be warmed by current flowing therein,
which in turn, can lower its resistance value. Alternate
embodiments may use any other suitable inrush current lim-
iter. One non-limiting example may be a fixed resistor or the
like.

Selection of inrush current limiters 42 and 44 can be
accomplished by, for example, calculating the maximum
input energy the inrush current limiter will absorb when the
device is turned on using equation (1):

E=1%Cy,, *V,’; Wherein

M

E is the maximum energy rating;
C,,. 1s the amount of bus capacitance; and
V . 18 the peak AC voltage or the maximum DC voltage.

Thus, for example, ifC,,,.is 100puF andV,,, is 1500 v, then
the maximum energy rating will be 112.5 J. Accordingly,
inrush current limiters 42 and 44 can be selected to have an
energy rating greater than 112.5 J. Further, the resistance of
the inrush current limiter can be of a value such that compo-
nents of rectifier circuit 28 are not stressed. An example of an
inrush current limiter that fulfils these preferences is
Ametherm Inrush Current Limiter Part No. MS22212103,
which contains a maximum energy rating of 220 J and a
resistance of 120 ohms at 25° C. Other suitable inrush current
limiters and techniques for selecting inrush current limiters
are also available.

Referring still to FIG. 2, surge suppressor circuit 24 can be
realized by varistor 46. Varistor 46 is connected in parallel
between inrush protection circuit 22 and noise filter circuit
42. Varistor 46 can be used to absorb high voltage transients
or surges that may occur from the output of ballast 16. Selec-
tion of varistor 46 can be accomplished by, for example,
selecting a varistor that has a maximum allowable voltage no
less than V., where V, _ is the peak AC voltage or the
maximum DC voltage from the output of ballast 16. In this
manner, varistor 46 will not clamp as long as the voltage does
notexceedV,, .. An example of a surge suppressor that fulfils
these preferences is Panasonic ZNR Transient/Surge
Absorber Part No. ERZV10D182CS, which has a maximum
allowable voltage of 1000 VAC, .. (1465 VDC). Other suit-
able surge suppressor devices and techniques for determining
suitable surge suppressor devices are also available.

Incoming current passes through noise filter 26 to prevent
noise interference from being received by power converter
18. Noise filter circuit 26 can be realized by X-class capacitor
56, Y-class capacitors 48 and 50 and discharge resistors 52, 54
and 56. Selection of the type and number of X-class capaci-
tors can be accomplished by any suitable technique in order
to, for example, pass EMC testing. One suitable technique is
to select a specific capacitor, calculate the power dissipation
of that capacitor and, if the calculated power dissipation for
the selected capacitor is higher than the maximum allowed
power dissipation for the specific capacitor, determining how
many capacitors should be placed in parallel to achieve a
power dissipation that is less than or equal to the maximum
allowed power dissipation.

Accordingly, the RMS current of the X-class capacitor can
be estimated, which as discussed in more detail below, to
calculate the worst case power dissipation of X-class capaci-
tor 56. RMS current of the X-class capacitor can be calculated
using equations (2) and (3):
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Z. = m, wherein

5
Z. is the impedance of the X-class capacitor at the ballast

switching frequency Fb;
Cx is the value of the X-class capacitor; and
Fb is the switching frequency of the ballast voltage.

4Vmax

N2

c

©)

Irms = ; wherein

Irms is the RMS current for the X-class capacitor;

Vmax is the peak AC voltage or the maximum DC voltage;
and

7. is the impedance of the X-class capacitor at the ballast
switching frequency Fb.

In equation (3), Irms is found for the first harmonic of an
input square wave. Alternatively, the RMS current for the
X-class capacitor can be determined for a sinusoid, sawtooth
or any other input waveform.

Once the type and value of X-class capacitor 56 is selected,
X-class capacitor 56 can be evaluated based on its estimated
power loss during operation of power converter 18 using
equation (4) to determine the ESR of the X-class capacitor,
equation (5) to determine the number of capacitors to place in
parallel so that the power dissipation is less than the maxi-
mum allowable power dissipation and equation (6) to deter-
mine the estimated power loss of the X-class capacitor:

)

Resr = wherein

DF
2.1 f-Cx’

Resr is the theoretical equivalent series resistance of the
X-class capacitor;

DF is the dissipation factor for the X-class capacitor;

f is the frequency at which the dissipation factor has been
specified for the X-class capacitor; and

Cx is the value of the X-class capacitor.

nel (5)
- Irms\2
n= thle(—) - Resr > Pc
n
nen+l
n; wherein

n is the number of X-class capacitors in parallel;
Irms is the RMS current for the X-class capacitor;

Resr is the equivalent series resistance of the X-class capaci-
tor; and

Pc is the maximum allowed power dissipation value for the
X-class capacitor.

Irms\2 . 6)
Pesrya = (—) - Resr; wherein
n
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6
Pesr,,,, 1s the maximum power dissipation of an X-class
capacitor;
Irms is the RMS current for an X-class capacitor;
Resr is the equivalent series resistance of an X-class capaci-
tor; and
n is the number of X-class capacitors in parallel.

The ESR of the X-class capacitor determined by equation
(4) may be different from the ESR at the operating frequency.
Accordingly, the ESR at the operating frequency may be used
to calculate the power dissipation of the X-class capacitor
instead of the ESR of the X-class capacitor as determined by
equation (4). An example of a suitable X-class capacitor 56
that can be used in noise filter 26 can have a value of 100 pF,
amaximum allowed power dissipation 0of0.25 W, and a DF of
0.001 at 1000 kHz. Other suitable capacitors and techniques
for determining suitable capacitors for noise filter 26 are also
available.

Rectifier 28 receives the filtered AC signal and outputs a
rectified voltage using diodes 60, 62 64 and 66. Selection of
diodes 60, 62 64 and 66 can be accomplished by, for example,
selecting a type of diode that has a reverse voltage rating at
least as high as Vmax so that the diode is able to withstand
reverse voltages as high as the peak voltage or the maximum
DC voltage. An example of a diode that fulfils these prefer-
ences is STMicroelectronics Part No. DTV1500SD, which
has a maximum voltage rating of 1500V. Other suitable rec-
tifier devices and techniques for determining suitable rectifier
devices are also available.

The rectified voltage is smoothed by main filter 30, which
is connected across rectifier 28. Main filter 30 can be realized
electrolytic capacitor 68, 74, 80 and 86. Alternatively, main
filter 30 can be realized by one or any other suitable number
of capacitors. Electrolytic capacitors 68, 74, 80 and 86 act as
a reservoir, supplying current to the output when the varying
DC voltage from rectifier 28 is falling (i.e. resulting in a
smoothed DC link voltage VDC). Selection of electrolytic
capacitors can be accomplished by, for example, choosing a
specific capacitor bus value (i.e. total electrolytic capacitance
value) and verifying that this bus capacitance value permits
the DC link voltage to be greater than the maximum LED
forward voltage drop.

Referring to FIG. 6, a circuit simulation waveform 600
illustrates an example of how the selected bus capacitance
value results in the DC link voltage (illustrated by a solid line
602) being greater than the maximum output forward voltage
of LEDs 20 (illustrated by a dotted line 604) during both the
charging and discharging of the selected bus capacitor. The
point where DC link voltage and rectified output voltage
(illustrated by a dashed line 606) intersect is greater than the
maximum output forward voltage. If the selected bus capaci-
tor did not begin recharging the DC link voltage, the DC link
voltage would fall below the maximum output forward volt-
age. However, since the capacitor begins charging at the
intersection point of the rising edge of the rectified output
voltage, the DC link voltage does not fall below the maximum
output forward voltage of LEDs 20. Accordingly, selection of
a bus capacitance value, such as 100 pF, can fulfill these
preferences and can also prevent the current regulator from
entering discontinuous conduction mode. Other suitable bus
capacitance values are also available. The maximum output
forward voltage of LEDs 20, the rectified output voltage and
DC link voltage can be represented using equations (7) and
(8):

V0,0 =Vled,,, " Num;,;.; wherein (7
Vo, 1s the maximum output forward voltage of the series
connected LEDs;

Vled,, . is the maximum LED forward voltage drop; and
Num,,, is the number of series connected LEDs.

Vin(t, Vpk)=|Vpk-cos(w-7); wherein (®)
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Vin(t, Vpk) is the rectified output voltage;
Vpk is the peak voltage of the rectified output voltage;
o is the fundamental frequency of the input waveform; and
t is the time.
The DC link voltage can be estimated and represented by
using equations (9)-(12):

)

i
V(D) = -f—ldc dr, wherein
0

buis

v(t) is the DC link voltage;

C,,.s 1s the bus capacitance;

Idc is the current drawn from the DC supply; and

t is the time. Finding the integral of equation (9) results in
equation (10):

10

-1
ve(D) = v dde-t+ C

buis

Power converter 18 can keep constant power flowing out of
the DC link voltage into LEDs 20 permitting Idc to increase as
the DC link voltage decreases. Accordingly, equation (10) can
also be represented as equation (11):

1 —Po
Chus Vo)

t+C (n

velt) =

Po is the output power of the LEDs. Solving for v (1), results
in equation (12):

(12

L
velt) = €+ Cous + (€% Cous? = 4 Cin - Po- 02

2 Chys

To solve equation (12) for the constant of integration, we
can approximate a worst case value for C when the initial
condition (i.e. t=0) of the DC link voltage is valid from the
peak of the rectified voltage Vpk, which results equation (13):

1 13
[ VPk- Cous + (VPR - Chs® = 4 Cis Po-1)? | 4

ve(n) = A

Once, the selected bus capacitance has been, realizable
values can be selected for the capacitance. Selection of the
type and number of capacitors in main filter 30 can be accom-
plished by any suitable technique in order to, for example,
provide a DC link voltage that does not fall below the maxi-
mum output forward voltage of the LEDs 20. Preferably,
capacitors should be able to sustain high voltages. By placing
four capacitors 68, 74, 80 and 86 in series as shown in FIG. 2,
main filter 30 can have a higher voltage rating.

However, if there is more than one capacitor in main filter
capacitor 30, voltage may not be evenly distributed across
each capacitor. Balancing resistors 70 and 72 can be placed in
parallel with capacitor 68, balancing resistors 76 and 78 can
be placed in parallel with capacitor 74, balancing resistors 82
and 84 can be placed in parallel with capacitor 80 and bal-
ancing resistors 88 and 90 can be placed in parallel with
capacitor 86 so that each of the balancing resistors can assist
in permitting capacitors 68 to assist capacitors 68, 74, 80 and
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86 to share voltage evenly. Selection of the number and type
of'balancing resistors 70, 72, 76, 78, 82, 84, 88 and 90 can be
accomplished by any suitable technique, such as by the resis-
tors maximum voltage rating, and have any suitable value,
such as 100 kQ.

Current regulator power section 32 applies the DC link
voltage across LEDs 20. Current regulator circuit 32 can be
realized by inductor 92, low-side switch 96, diode 98, capaci-
tor 100, current controller circuit 102, a gate resistor 104,
sense resistors 108, 110, 112, 114, 116, 118 and 120, feed-
back resistor 122 and feedback capacitor 124. One end of
LEDs 20 are connected to inductor 92 while the other end of
LEDs 20 are connected to low-side switch 96. Diode 98 is
connected in parallel to LEDs 20 and inductor 92 and pre-
vents reverse currents from flowing through current regulator
32. Capacitor 100 is Switch 96 is connected and connected in
series Current regulator power section 32 applies the DC link
voltage across to LEDs 20. Alternatively, although only one
inductor is shown in the circuit, more than one inductor can be
implemented in series with inductor 92.

More specifically, inductor 92, connected in series with
LEDs 20, provides the charging and discharging current to
LEDs 20 according to the state of switch 96. As will be
discussed in more detail below, the state of switch 96 is
controlled by current controller 102.

Current regulator power section 32 utilizes a buck con-
verter topology and can operate in a continuous conduction
mode to convert DC link voltage to a desired LED drive
voltage while providing a desired average LED current 1,
(also the average inductor current). During turn-on of switch
96, a function for current i, ,,, can be represented using equa-
tions (14)-(16):

d. 4 (14)
Vien(t) = Lf - Ezmn(t); wherein

t is the time;

V(1) is the inductor voltage at time t;

Lfis the value of the inductor(s); and

i;,,(t) is the inductor current at time t. Taking the integral of
both sides of equation (14) results in equation (15):

. 1 . . (15)
iron(l) = L_f - | (Vin—Vo)dr, wherein
0

Vin is the DC link voltage; and
Vo is the output voltage for the LEDs. Vo can be calculated
using equation (16):

Vo=Vled-Num,,;,; wherein
Vled is the LED forward voltage drop; and
Num,,, is the number of series connected LEDs.

Finding the integral of equation (15) results in equation
17):

(16)

- L i an
iron(t) = 7 -(Vin—Vo)-1+C

Evaluating the integration constant C at the beginning and
end of the turn-on cycle of switch 96 results in two solutions
as represented by equations (18) and (19):

i1.0n(0)=C=I,; wherein

(18)
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1, is the minimum inductor current.

. 1 . (19)
iron(DTs) = C = Ipk — E (Vin—Vo)-D-Ts;

wherein

D is the operational duty cycle;
Ts is the switching period of the DC-DC converter; and
Ipk is the maximum inductor current.

During turn-off of switch 96, a function for currenti, , ,can
be represented using equations (20)-(22):

d . (20)
Vg (D) = Lf - EZLfo(I)

Taking the integral of both sides of equation (20) results in
equation (21):

. Lo @D
lLojf(l‘) = E L (—Vo)dr

Finding the integral of equation (21) results in equation
(22):

— Vi 22
—0-t+C @2

irof (1) = 7

Evaluating the integration constant C at the beginning and
end of the turn-off cycle of switch 96 results in two solutions
as represented by equations (23) and (24):

iLor(0) = C = Ipk 23

_ —Vo 24)
il -D)-Ts]=C=1 _[7 1 —D)-Ts]

An expression for the average inductor current I, current
can be represented by equation (25):

1 D-Ts 1-D)Ts (25)
Iy =—- [f iron(Ddt + f iLoff(t)dt]
Ts o o

Substituting equation (17) (using the integration constant
from equation (18)) and equation (22) (using the integration
constant from equation (24)) into equation (25) results in
equation (26):

E Vin— V. I|d (26)
I_L j(; [Lf (Vin—Vo)-r+ 1] T+
L H)).TS[_VO t+1 Vo 1-D
R R R
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Substituting Vo/Vin for the duty cycle D and solving for I,
results in an equation (27):

2.1y -Vin-Lf — Vo-Ts-Vin+ Vo - Ts (27

1
2 Vin-Lf

I =

Setting equation (27) equal to 0 and solving for Lfresults in
a value for inductor Lf that will provide inductor current
operating at the boundary between discontinuous conduction
mode and continuous conduction mode as represented by
equation (28):

—Vin+ Vo
Ip-Vin

-1 28
-Vo-Ts- ©@®

If =

Selecting an inductor value Lf that is larger than the value
calculated by equation (28) can permit current regulator 32 to
provide inductor current for maintaining continuous conduc-
tion mode. In other embodiments, inductor value L.f may be
selected so that current regulator 18 is in discontinuous con-
duction mode.

For instance, if the maximum DC link voltage Vin is 400 V,
maximum output voltage for the LEDs Vo is 117 V, the
desired average LED current I; is 0.35 A, and the switching
period of the converter T is 0.01 ms, will result in an inductor
value Lf of 1200 uH. One or more inductors can be used to
realize the Lf inductor value in current regulator power sec-
tion 32. For example, two inductors connected in series each
having a value of 750 uH can be sufficient to meet an inductor
value Lf of 1200 uH. Other suitable inductor values Lf and
techniques for determining suitable inductor values Lf are
also available.

The average for the average current [, from equation (25)
can also be used to calculated the peak inductor current Ipk.
Substituting equation (17) (using the integration constant
from equation (19)) and equation (22) (using the integration
constant from equation (23)) into equation (25) results in
equation (29):

I = 29
1 DIsr | . 1 .
—- [f [— -(Vin—Vo)-t + Ipk — [— -(Vin— Vo)-D-Tstl+

o Lf

Ts Lf
[ sl
— 1+ 1
0 if P

Substituting Vo/Vin for the duty cycle D and solving for Ipk
results in an equation (30):

2.1 -Vin-Lf + Vo-Ts- Vin— Vo* - Ts (30)

Ipk Vin-If

1
)

When switch 96 is closed, current controller 102 monitors
the current through LEDs 20 by measuring the voltage drop
across sense resistors 108, 110, 112, 114, 116, 118 and 120.
This current feedback IswFbk can be fed through a first order
RC filter composed of feedback filter resistor 122 and feed-
back filter capacitor 124. A time constant T can be calculated
for the current feedback using equation (31):
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1 31

T=——;
N-F.

wherein

N is a constant indicating the magnitude of T as compared to
the switching period of the DC-DC converter;

T is the time constant for the current feedback; and

F_ is the switching frequency of the power converter.

In conjunction with equation (31), values for resistor 122

and capacitor 124 can be calculated using equation (32):
=R Cf

After passing through feedback filter resistor 122 and feed-

back filter capacitor 124, current feedback is fed to current

controller 102, which can provide a pulse width modulated

(PWM) control signal through a gate resistor 104 to switch

96.

As illustrated in FIG. 3, current controller 102 can be
realized by an IC 200 that can control the average LED
current I, by comparing the current feedback to an internal
reference. In response to the current feedback, current con-
troller 103 provides a PWM control signal through gate resis-
tor 104 to the gate of switch 96. According to techniques such
as that described in UCC3800 BiCMOS Current Mode Con-
trol ICs, which is incorporated herein in its entirety by refer-
ence, the oscillator frequency, voltage reference VSREF and
compensation waveform can be configured to provide the
appropriated output Vgl for driving the gate of switch 96.

Generally, as shown in FIG. 3, the oscillator frequency can
be configured to, for example, 100 kHz by selecting appro-
priate values for a timing capacitor 202 and serially connected
timing resistors 204 and 205. Timing resistors 204 and 205
can be connected between voltage reference VSREF and an
RC input of IC 200. Alternatively, timing resistors may be
implemented using a single resistor, multiple resistors in
series, multiple resistors in parallel, or any other suitable
series or parallel combination of resistors. Timing capacitor
202 can be connected between the RC input and a digital
ground DGND.

For example, a sawtooth waveform can be generated by IC
200. The oscillator waveform can be generated by a ramp up
waveform and a ramp down waveform represented by equa-
tions 33 and 34, respectively:

€2

i 33
Vimp,, (1) = Viowy, + Vref-(l —efrcr ]; &3

wherein

Vrmp,,(t) is the ramp up interval;

t is the time;

Vlow,, is the low oscillator threshold voltage;
Vref is the reference voltage VSREF;

R is the timing resistor; and

C is the timing capacitor.

i (34)

wherein

Vrmp,,,,(1) is the ramp down interval;
Vhi,, is the high oscillator threshold voltage; and
Rd is the discharge current of the timing capacitor.
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Substituting Vhi,, for Vrmp,,,,(t) in equation (33) and solv-
ing equation (33) for time tresults in the time to ramp up to the
high oscillator threshold voltage as represented by equation
(35):

—Vhiy, + Viowy, + Vref (35)

"R, Cr:
Vref ] 1T

LRy, Cr) = —ln(

wherein

t,, 18 the time to ramp up to the high oscillator threshold
voltage. Similarly, substituting Vlow,, for Vrmp,,, (1) in
equation (34) and solving equation (34) for time t results in
the time to ramp down to the low oscillator threshold voltage
as represented by equation (36):

Viowy, (36)

Vhiy,

Laun(Cr) = —lﬂ( )'Rd' Cr;

wherein

t,, 1s the time to ramp up to the high oscillator threshold
voltage.

Accordingly, from equations (33)-(36) the oscillator wave-
form can be represented by equation (37):

Vimp,, (@) if 1 < 1p(Ry, Cr) (37)

Vosc(t) = ;
© Vimp 4, (t = Lp(R7, Cr)) if 1 2 1p(R7, Cr)

wherein

Vosc(t) is the oscillator waveform.

Current controller 102 can also include a slope compensa-
tion scheme for providing constant current regulation. Pref-
erably, the slope of the oscillator waveform Vosc(t) should be
constant so as to not affect the slope compensation technique.
The slope compensation scheme can be realized by a transis-
tor 206 and compensation resistor 208 to butfer the oscillator
waveform generated from timing capacitor 202. Transistor
206 and compensation resistor 208 may cause the ramp up
waveform Vrmp,,(t) to have a different shape due to, for
example, current gain of transistor 206. For example, still
referring to FIG. 3, the altered ramp up waveform can be
represented by equation (38):

Vrmp,, (0) = (38)

ﬁ’ Rry - Vbe + Vbe - Ry —Rpp - Vref — Ry - Vrmpup(t)
Rri-Re-B+Rri-Rr2-Re- B ’

-

wherein

Vrmp,,,, is the altered ramp up waveform as a function of

time t;

R, is the emitter resistance of transistor 206.

[ is the current gain of transistor 206;

Vbe is the base-emitter voltage of transistor 206;

R, and R, are the timing resistors 204 and 205;

Vref is the reference voltage VSREF; and

Vrmp,,(t) is the ramp up interval as a function of time t.
Preferably, the current feedback at the minimum DC link

voltage Vlink,,,,, and maximum voltage Vlink,,,, will be the
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same. Using, for example, superposition, feedback current
can be represented by equation (39):

X ir(t)- Rs- Remp Rs + Ref 39
ik = 5 FVmp, ()
Rs+ Rcf + Remp Rs + Ref + Remp
wherein
iz 5 15 the feedback current;

i,(t) is inductor current as a function of time t;

Rs is the current sense resistor;

Remp is the compensation resistor;

Rf is the feedback filter resistor; and

Vrmp,,»(t) is the altered ramp up interval waveform as a
function of time t.

If the inductor value Lf calculated in equation (28) pro-
vides a peak value of current feedback that is over a preferred
peak value of current feedback, such as 0.5 A, the value of the
inductor Lf can be varied so that the peak value does not
exceed this preferred value. Specifically, the peak values of
the current at the minimum DC link voltage Vlink,,,,, and the
maximum voltage Vlink,, ., can be calculated using equation
(30). Further, the peak ramp waveform values at the minimum
DC link voltage Vlink,,,,, and the maximum voltage Vlink,, .
can be calculated using equation (38). Accordingly, substitut-
ing these values into equation (39) can give equations for the
peak feedback current at the minimum and maximum DC link
voltage operating points as represented by equations (40) and

(41).

ir, p1 - Rs- Remp
Rs + Ref + Remp

Rs+ Ref
iLpkl " Rs + Ref + Remp’

(40)

ik pk = + Vimp

wherein

1z i 18 the peak feedback current at the maximum voltage
Vlink,,, ,.;
i;_,u 1s the peak value of the inductor current at the maxi-
mum voltage Vlink,,, ; and

Vrmp;, ., is the peak ramp waveform value at the maximum
voltage Vlink,,, .

Rs+ Ref
iLpk2 RS+ Ref + Remp’

ir, pk2 - Rs+ Remp 41)

——————— + Vi
Rs + Ref + Remp mp

ik pk =

wherein

iz i 18 the peak feedback current at the minimum voltage
Vlink,,,;,,;
i;_,x» 1s the peak value of the inductor current at the minimum
voltage Vlink,,, ; and
Vrmp,; ., is the peak ramp waveform value at the minimum
voltage Vlink,,,,..
Setting equations (40) and (41) equations equal to each
other gives a peak value of current feedback that is the same
at the minimum and maximum DC link voltage operating
points. From these equations, appropriate values for current
sense resistor 108 (Rs) and compensation resistor 208
(Remp) can be determined. Power loss calculations can be
performed, by assuming worst case RMS currents, for current
sense resistor 108 and compensation resistor 208. However,
power loss may be minimal in, for example, compensation
resistor 208 so that a value, such as 7.5 k, can be utilized

without a power loss analysis. Other suitable compensation
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resistor values and techniques for selecting compensation
resistor values are also available.

A realizable value and a number of resistors can be chosen
for current sense resistor by determining the worst case power
loss. One technique to determine the worst case power loss is
to assume that the ramp waveform Vrmp,,,,(t) is not added to
the feedback current. The scalar for the current can be repre-
sented by equation (42) and the limited peak current can be
represented by equation (43)

B Rs-Remp
" Rs+ Rcf + Remp

42)

Kip ; wherein

K 4+ 15 the scalar for the feedback current. The peak current
that

_ Vorefu 43)

im = 5 wherein

K;ﬂ,k

1,,,, 1s the peak current limited by the maximum voltage ref-
erence in the IC current controller; and
Voref, . is the maximum voltage reference in the in the IC

current. Accordingly, the worst case power loss can be

Pr~(VDpoar Ly -Rs; wherein (44)

Py, is the power rating for the current sense resistor Rs;
Dmax is the maximum duty cycle;

1,,,, 1s the peak current. As such, a suitable number of resistors
can be implemented in lieu of one current sense resistor 108
such that the power rating of current sense resistor 108 is not
exceeded. For example, 7 resistors can be connected in par-
allel, each having a value of 2.7Q. Other suitable current
resistor values and techniques for selecting current resistor
values are also available.

UCC3800 BiCMOS Current Mode Control ICs, refer-
enced above, also provides a technique to set up the internal
current reference of IC 200. Still referring to FIG. 3, a poten-
tiometer 210 is connected between voltage reference VSREF
and DGND. Connected in parallel to potentiometer 210 are
resistors 212 and 214. Capacitor 216 is connected in parallel
to resistor 214. Resistor 218 has one end connected to capaci-
tor 216 and the other end connected to a point connecting the
inverting input of the error amplifier (FB) as well as the output
of the error amplifier (COMP), which is connected through
capacitor 220 and resistor 222. Other suitable current resistor
values and techniques for selecting current resistor values are
also available.

Referring to FIG. 5, IC 200 can be powered by providing a
voltage reference V12 to pin VCC by using power circuitry
400. Referring to FIG. 5, voltage reference V12 is generated
through IC 401. IC 401 can be a positive voltage regulator
such as Texas Instruments Part No. UA78M12. DC link volt-
age VDC is provided through a bias resistor 402 to create a
voltage potential Vz. A zener diode 404 is connected to a point
between bias resistor 402 and V,,and to one end of a resistor
406 to absorb excess voltage. The other end of resistor 406 is
connected to PGND. Vz is filtered by an input filter capacitor
406 and is fed into the input of IC 401 (VIN).

VIN can also be fed from the drain-source voltage of
switch 96 through a boost resistor 126. Accordingly, the drain
source-voltage of switch 96 may provide the power to permit
control circuits of power converter 18 to operate over a wide
range. The output of IC 401 provides the voltage reference
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V12 filtered by an output filter capacitor 408. Other suitable
techniques, components and configurations for powering IC
200 are also available.

Returning to FIG. 1, selection of switch 96 can be accom-
plished by, for example, estimating the maximum power loss
of the switch using equation (45):

Ptot=Psw+Pcnd; wherein (45)

Ptot is the total power loss of the switch;

Psw is the switching loss of the switch; and

Pend is the conduction loss of the switch. The maximum
switching loss Psw of switch 96 can be calculated using
equation (46):

[ [ (46)
Psw= Fs-(z Vlinkpay - I 1, + 3 Viinkax - IL-tf);

wherein

Fs is the switching frequency of the converter;
Vlink,,,,. is the maximum DC link voltage

1; is the average inductor current;

t, is the switching rise time; and

t,is the switching fall time. Assuming that switch 96 is con-
tinuously on at the highest temperature, the maximum con-
duction loss Pend of switch 96 can be estimated using equa-

tion (47):

Pcnd=I,’Rds, ; wherein

on__max>

@7

Rds,,, max 15 the maximum resistance between the drain and
the source when the switch is closed. The resistance
Rds,,, .. can also be scaled by a temperature scale factor to
obtain a more accurate conduction loss Pcnd.

If switch 96 were to operate without a heatsink, the tem-
perature rise of switch 96 due to power dissipation can be

estimated using equation (48):

TempRise=Prot-0, ; wherein

Jar

“43)
TempRise is the temperature rise of the switch; and

8, is the junction to ambient thermal resistance of the switch.
If switch 96 does not operate within its proper temperature
limits, a heat sink may be used in conjunction with switch 96.
If a heat sink is used, the thermal resistance of the heat sink
can be estimated such that switch 96 can operate within its
proper temperature limits. The thermal resistance of the heat
sink can be estimated using equation (49):

AT
~ Pror

i 49)

- ic;  wherein

0., 1s the case to ambient thermal resistance of the heat sink;
8,,1s the junction to case thermal resistance of the switch; and
AT is the change between the maximum temperature of the
switch and the ambient temperature.

Switch 96 may be any suitable controllable switching
device such as a BIT, IGBT, standard FET, etc., that can be
controlled through application of a control signal. An
example of a suitable switch 96 is STMicroelectronics
N-Channel Power MOSFET Part No. STFV4N150. Other
suitable switching devices and techniques for determining
suitable switching devices are also available.

The rise time rate of change of current di/dt and rise time
rate of change of voltage dv/dt of switch 96 can change
depending on the value of gate resistor 104. Equation (50)
represents an estimation of turn-on di/dt:
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(60

Id
didt,, = [—; wherein

rsw

didt,,, is the rise time rate of change of current of the switch;
1d is the load current during the switching time test circuit;
and

t,,,, 1s the rise time scaled by the gate resistor value. The rise

time scaled by the gate resistor
value t,,, can be calculated using equation (51):

R (S

Ty = T -1,; wherein
8avg

R is the gate resistor value;

1, is the rise time of the switch;

Rg,,, is the minimum average resistor value to achieve the
rise and fall times of the switch. The minimum average resis-
tor value Rg,,,,, can be calculated using equation (52):

Vgs—Vgs, Vgs—Vgs,
0ss 0ss

I, I, .
r 3 r ;. wherein

(62

Rg =

Vgs is the gate to source voltage of the switch;
Vgs,, is the gate to source threshold voltage of the switch;
Qgs is the gate to source charge of the switch;
t, is the rise time of the switch; and
t,is the fall time of the switch.

The rise time rate of change of voltage dv/dt of switch 96
can be estimated using equation (53):

Vdd -80%
dvdi,, = ———;

Irsw

53
wherein ©3)

dvdt_, is the rise time rate of change of voltage of the switch;
Vdd is the DC link voltage during the switching time test
circuit; and

t,,,, 1s the rise time scaled by the gate resistor value (as cal-
culated by equation (51)).

FIGS. 7A and 7B illustrate di/dt and dv/dt, respectively, as
a function of different values of gate resistor 104. Preferably,
a value for gate resistor 104 is chosen so that both di/dt and
dv/dt are relatively constant. Gate resistor 104 may be imple-
mented using a single resistor, multiple resistors in series,
multiple resistors in parallel, or any other suitable series or
parallel combination of resistors. For example, gate resistor
may be implemented using a combination of two 100 ohm
resistors. Other suitable gate resistor values and techniques
for selecting gate resistor values are also available.

A shunt voltage regulator circuit 34 is optionally coupled in
parallel to the current regulator power section 31. Shunt volt-
age regulator 34 as shown clamps the DC link voltage VDC so
it does not exceed, for example, a maximum DC link voltage
Vlink,, .. The voltage clamping can be accomplished by, for
example, PWM of a power switch 130 to provide a control-
lable power loss in a shunt regulator load 132 (e.g. one or
more resistors). In other words, shunt voltage regulator 34
draws increasing current from the ballast 16 through the
rectifier 28 and main filter capacitor 30 and wastes that power
in the shunt regulator load 132 if the voltage exceeds a preset
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value. This prevents the output voltage from the ballast 16
from rising excessively by having an amount of power dissi-
pation. Accordingly, the operating point (e.g. 120 V) of light
10 can be controlled based on the impedance of shunt regu-
lator load 132.

As one non-limiting example, the normal operating point
of replacement lamp 30 can be around 120V and 220 mA. Of
course, other replacement lamps can operate at different oper-
ating points. When replacement lamp 30 is operating from
ballast 34, the power in lamp 30 increases as the current in
lamp 30 decreases, and vice versa, because the operating
point voltage of lamp 30 is below the maximum power point
of the ballast.

A first end of shunt regulator load 132 is connected to the
cathode of recirculation diode 98 the second end of shunt
regulator load 132 is connected to a first end of power switch
130. The second end of power switch 130 is connected to
PGND. Further, a recirculation diode 134 is connected in
parallel to shunt regulator load 132. While shunt voltage
regulator 34 functions in part to protect components from
high voltages, it also causes power dissipation through a shunt
regulator load 132. The resistance of shunt regulator load can
be calculated by using equation (54):

Viink? ., . (54
Rload = ; wherein

max

Vlink,, . is the maximum DC link voltage; and

Po,,,. 1s the maximum output power of the LEDs. Shunt
regulator load 132 may be implemented with one resistor,
multiple resistors in series, multiple resistors in parallel, or
any other suitable series or parallel combination of resistors.

A voltage controller 136 provides a PWM control signal
through gate resistor 138 to the gate of switch 130. A suitable
value for gate resistor 138 can be determined by using tech-
niques similar to that described in connection with gate resis-
tor 104 of current controller 102. Further, the type of switch
130 can be chosen using techniques similar to that described
in connection with switch 96 of current controller 102.
Although gate resistor 138 is shown as one resistor, gate
resistor may be implemented multiple resistors in series, mul-
tiple resistors in parallel, or any other suitable series or par-
allel combination of resistors.

The embodiments of the present invention are not limited
to shunt voltage regulator circuit 34. For example, a linear
regulator in the form of an integrated circuit can be used in
lieu of or in addition to shunt voltage regulator circuit 34. Of
course, other regulator circuits are also available.

Referring to FIG. 4, voltage controller 136 can be realized
by an IC 300 that can control the voltage to shunt regulator
load 32. The DC link voltage VDC is fed into a resistor divider
network, which can include resistors 304 and 306. Each resis-
tors 304 and 306 may be implemented by any suitable number
of resistors and may be in any suitable series or parallel
configuration. For example, six resistors can be serially and
parallely connected in lieu of one resistor 304 so that the
power rating of each of the resistors is not exceeded. A filter-
ing capacitor is connected in parallel to resistor 306, each
having one end connected to ground. At the opposing end of
capacitor 308 is connected to the inverting input of the error
amplifier (FB). the ends of capacitor. The opposing end of
capacitor 308 is also connected to the output of the error
amplifier (COMP), which is connected through a capacitor
310 in parallel with a resistor 312 connected in series with a
capacitor 314.
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The oscillator frequency can be configured to, for example,
100 kHz by selecting appropriate values for a timing resistors
316. Timing resistor 316 can be connected between RT and
GND. Timing capacitor 202 can be connected between the
RC input and a digital ground DGND.

IC 200 can be receive power (VCC) similar to the tech-
niques described above in connection with IC 200 of FIG. 3.
The short-circuit protection pin (SCP) and dead-time control
pin (DTC) can be grounded.

The output driver may not have enough drive capability to
supply the proper gate drive through gate resistor 138 to the
gate of switch 130. Accordingly, an optional driver IC 402 can
be connected to the output of IC 300 (OUT) to supply a
suitable gate voltage drive. One suitable driver is Texas
Instruments Mosfet Driver Part No. TPS2829. Other suitable
drivers are also available.

While the invention has been described in connection with
what is presently considered to be the most practical and
preferred embodiment, it is to be understood that the inven-
tion is not to be limited to the disclosed embodiments but, on
the contrary, is intended to cover various modifications and
equivalent arrangements included within the spirit and scope
of the appended claims, which scope is to be accorded the
broadest interpretation so as to encompass all such modifica-
tions and equivalent structures as is permitted under the law.

What is claimed is:

1. An illumination device including LEDs for connection
to an existing fluorescent lamp fixture including a conven-
tional ballast, the ballast configured to provide a current sig-
nal, the illumination device comprising:

protection circuitry configured to protect the illumination
device from the ballast current signal;

a full-wave rectifier electrically coupled to the circuit pro-
tection means and configured to produce a rectified volt-
age output;

a smoothing filter electrically coupled to the full wave
rectifier and configured to produce a smoothed rectified
voltage output; and

a current regulator power circuit electrically coupled to the
smoothing filter and the LEDS, the current regulator
power circuit including:

a first switching element configured to operate in
response to a first pulse width modulated (PWM)
ON/OFF control signal, the first switching element
delivering current to the LEDs in response to the ON
control signal and the first switching element not
delivering current to the LEDs in response to the OFF
control signal;

a current controller electrically coupled to a gate of the
first switching element, the current controller config-
ured to generate the first PWM control signal;

a current sense resistor electrically coupled to the first
switching element and configured to sense the current
through the LEDS, wherein the sensed current is fed
back to the current controller;

a load resistor; and

a shunt voltage regulator circuit electrically coupled to the
current regulator power circuit and the load resistor and
configured to dissipate power through the load resistor
when the rectified output voltage is greater than a maxi-
mum voltage.

2. The illumination device of claim 1, wherein the shunt

voltage regulator circuit further comprises:

a second switching element configured to operate in
response to a second pulse width modulated (PWM)
ON/OFF control signal, the second switching element
delivering voltage to the load resistor in response to the
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ON control signal and the second switching element not
delivering voltage to the load resistor in response to the
OFF control signal; and

a voltage controller electrically coupled to a gate of the

second switching element, the voltage controller config-
ured to generate the second PWM control signal.

3. The illumination device of claim 1, wherein the protec-
tion circuitry comprises at least one of:

an inrush protection circuit configured to limit inrush cur-

rent from the ballast; and

a surge suppressor configured to suppress ballast voltage

from the ballast.

4. The illumination device of claim 1, wherein the smooth-
ing filter comprises:

at least one capacitor;

at least one discharge resistor electrically coupled in par-

allel to the at least one capacitor.

5. The illumination device of claim 1, wherein the current
regulator power circuit further comprises:

at least one inductor in series with the LEDs.

6. The illumination device of claim 5, wherein the current
regulator power circuit further comprises:

a recirculation diode electrically coupled in parallel with

the at least one inductor and the LEDs.

7. A method of supplying power to an illumination device
including LEDs and connected to an existing fluorescent
lamp fixture including a conventional ballast, the method
comprising:

receiving a current signal from the conventional ballast;

protecting the illumination device from the received cur-

rent signal;

rectifying the received current signal to produce a rectified

voltage output;

sensing current through the LEDs;

generating a pulse width modulated (PWM) control signal

from a current control circuit based on the sensed cur-
rent;

supplying current to the LEDs in response to the PWM

control signal so that the LED current reaches an average
LED current;
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regulating the voltage in the illumination device so that the
rectified voltage output does not exceed a maximum
rectified voltage.

8. The method of claim 7, wherein the average LED current
is determined based on the rectified voltage output and an
output voltage of the LEDs.

9. The method of claim 7, wherein the PWM control signal
is supplied to a switching element.

10. The method of claim 7, wherein protecting the illumi-
nation device further comprises at least one of:

limiting the current received from the conventional ballast;

and

suppressing ballast voltage from the conventional ballast.

11. The method of claim 7, further comprising:

filtering the rectified current signal.

12. An illumination device including LEDs for connection
to an existing fluorescent lamp fixture including a conven-
tional ballast, the illumination device comprising:

means for receiving a current signal from the conventional

ballast;

means for protecting the illumination device from the

received current signal;
means for rectitying the received current signal to produce
a rectified voltage output;

means for sensing the current through the LEDs;

means for generating a pulse width modulated (PWM)
control signal from a current control circuit based on the
sensed current;

means for supplying current to the LEDs in response to the

PWM control signal so that the LED current reaches an
average LED current; and

means for dissipating excess power through a load resistor

when the rectified output voltage is greater than a maxi-
mum voltage.

13. The illumination device of claim 12, further compris-
ing:

means for filtering the rectified current signal.



